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Viscous Flow of Aligned Composites 

D. M c L E A N  
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Middlesex, UK 

The case is considered of an aligned composite subjected to tensile creep in the direction 
of the fibres. A geometrical argument shows that shear strain in the composite is amplified 
I/2s times compared with unsupported matrix, where I/2s ..~ aspect ratio of the inter-fibre 
spaces. The shear stress is amplified (l[2s) '1" times, where n is the exponent in the matrix 
creep law. Consequently the rate of energy expenditure is amplified Vm(I/2s) 1 +'/" times, as is 
therefore the tensile flow resistance of the composite (Vm is the volume fraction of matrix). 
The potential increase in flow resistance is thus enormous. However, the fibre end-stress, 
which is calculated, oc fibre diameter, and may be large enough to initiate rupture unless 
the fibres are very thin (e.g. 1 /zm diameter). The tensile load is roughly equally divided 
between matrix and fibres irrespective of volume fractions. 

1. Introduction 
There have been several analyses of  the tensile 
creep of aligned fibre composites, the tensile 
stress being parallel to the fibre axis [1-4]. The 
most rigorous is that of Ferris [4], which because 
of its rigour is already quite complicated even 
though it is limited to matrices with simple linear 
viscosity.The most complete is that of Mileiko [3 ] 
who, like other authors, works in terms of stress. 
He presses simplicity to the point of using a 
wrong geometry that only allows extension of a 
sample to occur by creating holes; Mileiko 
recognised this but it did not seem to him 
important. 

It is doubtful if any analysis in terms of stress 
can combine reasonable simplicity with con- 
ceptual accuracy, because the stress-state in the 
flowing matrix is quite complicated. This 
combination can however be achieved by making 
the analysis in terms of energy dissipated instead 
of in terms of stress. There is no gain in quantita- 
tive accuracy, but it seems to the writer that the 
physical picture obtained is clearer as well as 
being conceptually more correct, and some 
conclusions are more obvious. 

Except for de Silva's treatment [2], which uses 
a perturbation of  the elastic situation, none of the 
treatments is limited to creep; they apply also to 
hot flow as, e.g. during injection-moulding of  
filled polymers, subject to the restriction that 
they assume aligned fibres. These treatments, 

98 

and also the present one, apply best when the 
plastic strain is substantially greater than the 
elastic, since they neglect elastic strains. At small 
plastic strains of the same magnitude as the 
elastic strain de Silva's treatment is probably the 
most nearly correct. 

2. Composite Flew Stress 
We can avoid discussion of the complicated 
stress system in the fibre-strengthened matrix by 
calculating in terms of the energy dissipated 
during flow. If  a stress ere applied to unsupported 
matrix extends it at the speed 4, the rate at which 
work is done is ~o~ per unit volume. Similarly 
for the fibre-strengthened matrix the rate of 
doing work is ao~ per unit volume, ae being the 
tensile stress required to produce extension at 
the rate ~. Let "to and q'o be the shear stress and 
shear strain rate in the unsupported matrix at 
45 ~ to the tensile axis; ~'o = �89 and ~o --- 24. 
We have 

Cro4 = ro~o (l) 

Let ~'e and ~'e be the significant shear stress and 
strain rate in the fibre-strengthened matrix; we 
have 

~ = ~-~v~ ( 2 )  

the term Vm (matrix volume fraction) being 
introduced because energy is assumed to be 
expended only in the matrix. The significant 
shear stress re and shear strain ye are those 
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parallel to the fibres because both these quantities, 
but especially the strain component, are greatly 
amplified as compared with ro and 7o (e.g. 
equation 5 below), and consequently they are the 
cause of  energy dissipation in the fibre-strength- 
ened matrix. From geometrical considerations 
~)e can be expressed in terms of ~o, and from 
knowledge of the matrix flow law re can then be 
expressed in terms of  ~-o. When this has been done 
ae can be expressed in terms of ao, to give there- 
fore the amplification of flow resistance intro- 
duced by the fibre-strengthening. 

The geometrical relations involved in the flow 
of fibre-strengthened material are simple, but 
different from those obtaining in the case when 
fibre and matrix undergo small, equal, elastic 
strains without large relative flow. Consider the 
element of fibre-strengthened solid, a piece of 
which is shown in fig. l;  under tensile loading 
this piece increases in length from p in fig. 1 to 
p(1 + e) in fig. 2. The fibres themselves are 

P 

Figure I Element of  f ib re-s t rengthened compos i te  loaded 
in tens ion as indicated by the arrows.  

J< - - Z - -  

i~ A" B" B' A ~ 
, ~ -p (J + E) - -  ~'i 

Figure 2 The element of fig. I after an extension e. 

supposed to be rigid and for the moment the 
matrix is supposed to extend uniformly, i.e. 
plane cross-sections remain plane. We make the 
assumption that the consequent relative motion 
between matrix and fibre is symmetrical about 
the centre-point of a fibre. The correctness of this 
assumption depends on the neighbouring fibres 
being distributed "uniformly", which raises a 
difficult problem of  definition, but it seems the 
only sensible assumption to make. At the centre 
of a fibre, e.g. O1 or 02 (fig. 1), there is thenzero 
relative motion, but at the fibre end a point in the 
matrix such as A (fig. 1) moves away fromthe end 
to A' (fig. 2) and there is relative motion A'B' 
(fig. 2) between fibre and matrix. At the opposite 
end there is relative motion A"B" in the contrary 

sense. At any point initially distant x from the 
fibre centre there is relative motion 

r = ~x (3a) 
The mean value of r is 

,~ = ~/ /4,  (3b)  

where 1 is the fibre length. Since the fibres are 
rigid, any point in a fibre will serve as reference- 
point from which to measure its relative motion, 
but the matrix does not extend uniformly as 
supposed in drawing fig. 2 unless at the interface 
between matrix and fibre there is completely 
uninhibited sliding. A more realistic supposition 
is the opposite one, namely that sliding is 
negligible. A decision must then be made about 
which point in the matrix to choose as reference 
point. In so far as two adjacent fibres such as the 
two depicted in fig. 3 can be considered in 
isolation, which again depends on the fibres 
being distributed uniformly, the centre line 
between them, e.g. YY' in fig. 3, is symmetrically 

centre point 

i i i # _ _ y ,  
- -  - -  - -  i - -  - -  - - j - -  - - i - - l - -  I . . . . .  

Centre point 

Z 

Figure 3 

disposed with respect to both fibres and therefore 
contains reference points in the overlap region 
which are suitable because they give the same 
answer for either fibre. Thus, for any point X1 in 
fibre 1 of fig. 3 we choose as matrix reference the 
point X 1 opposite X] and lying on the centre 
line; the corresponding point in fibre 2 is X 2. The 
relative motion r in equation 3 then involves a 
shear strain in the matrix of  magnitude ~'e = 2t]s 
where s is the spacing between fibres. Substituting 
in equation 3b gives the average matrix shear 
strain 7c in the fibre-strengthened material as 

~'e = ~I/2s (4) 

However, equation 4 relates to the shear 
depicted schematically in fig. 4, where the dashed 
lines indicate the shear--PQ'Q in fig. 4 represents 
the sheared state of PQ in fig. 3. Since PQ'Q is 
not perpendicular to the fibres as PQ is, the 
pieces of matrix in adjoining units like that in fig. 
4 no longer fit together; there are holes in the 
matrix similar to Mileiko's holes. In order to fill 
up the holes additional shear must take place. 
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. . . .  _ P ~ . : ~ - ~  . . . . . . .  ~ . . . . . .  , . ~ . . . ~ , ~  

IZ~ . ,~ , . . I ~ I I . . I . . I ,  t l I I I I r . ' , I . H A  - 

F igu re  4 Depicting part of the shear that occurs in the 
matrix. PQ in fig. 3 becomes PQ'Q here. There must, 
however, be additional shear if a hole is not to form to the 
left of PQ'Q. 

It is probably not far wrong to assume a doub- 
ling of the shear given in equation 4. 

We are now able to calculate the amplification 
of shear strain and hence of shear stress in the 
fibre-strengthened matrix. In a separate block of 
matrix the shear strain accompanying an 
extension E is yo = 2E. Comparison with 
equation 4 shows that in the fibre-strengthened 
material the shear strain is magnified by the 
factor 

7-2 = I/2s (5) 
~o 

when allowance is made for the doubling 
referred to. This shear magnification must 
cleally also apply to the shear strain rates. From 
this amplification of silear strain rate the 
amplification of shear stress can be obtained by 
using the flow law, which often approximates to a 
power law connecting shear stress ~- with strain 
rate ~): 

= c~-" (6) 

where ~ and n are experimentally determined 
constants. We therefore have 

(~__e) 1/n (l~o) 1In ( l~ 1In 
~-e = -- k2-~J = k~ss] ~-o (7) 

using equations 5 and 6 and applying the ratio in 
equation 5 to the strain rates. The shear stress in 
the composite is consequently magnified by the 
factor 

( 
= ( s )  

by comparison with unsupported matrix extend- 
ing at the same rate. 

Inserting in equation 2 the amplification 
factors for strain and stress, i.e. substituting for 
~'e from equation 8 and for ~,o from equation 5 

( l ~ l+l/n 
=e = I'm \ 2 s /  eo (9) 

Thus the stress ere required to extend the fibre- 
strengthened matrix at a given rate is magnified 
Vm(1/2s)l+l/n times compared with the stress eo 
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that extends the unsupported matrix at the same 
rate. The magnification arises mainly because of 
the shear strain (and shear strain rate) amplifica- 
tion in the fibre-strengthened matrix (equation 5) 
but partly also because the shear stress is 
amplified, though to a lesser degree (equation 8). 

Equation 9 cannot be exact because it states 
that cre is zero when l/2s is zero, i.e. in unsup- 
ported matrix, whereas the correct value is then 
ae = Cro. The reason for this error lies in the 
approximate nature of the "doubling assump- 
tion", made to avoid holes, in the calculation 
leading to equation 5. An exact assumption 
would produce an additional Vmeo term in 
equation 9. An apparently simple way of 
making the correction is to assume that the 
extra shear strain needed to avoid holes occurs as 
it would in unsupported matrix, i.e. without 
being amplified by the presence of the fibres. 
With this assumption a Vmeo term is correctly 
introduced. But it does not seem at all clear that 
this assumption is correct. In any case, in compo- 
sites the correction is slight since ere >> Co, and is 
almost certainly a far less important considera- 
tion than the question of irregular fibre distribu- 
tion referred to in the discussion. The correction 
is therefore neglected. 

It has been assumed in fig. 4 (and equation 4 
onwards) that no slip occms at the interface 
between matrix and fibre. Whether slip does or 
does not occur is an interesting scientific 
question. In hydrodynamic problems concerned 
with fluids of non-zero viscosity flowing past 
solid bodies it is accepted that there is no sliding 
at the interface itself, i.e. that the same interface 
atoms of fluid and body Jemain linked together 
[5, 6]. On the other hand, in polyerystals under- 
going creep, it is known that theie is much 
sliding at grain boundaries even though they are 
an unusually cohesive type of interface. Probably 
the difference between the two situations arises 
because far greater stresses are needed to deform 
polycrystals, even when hot, than to cause flow 
in a liquid like water, and the much greater 
stress is clearly moae likely to cause sliding at the 
interface. Although, therefore, we do not yet 
know whether interface sliding in any hot 
composite actually occurs and only experiment 
can determine whether it does, to reckon with it 
is only reasonable. Its effect would be to reduce 
the stress c~e (equation 9), since some of the shear 
strain will be replaced by sliding; in fig. 2, for 
instance, all the strain is so replaced. In the 
limiting situation, when at the interface there is 
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no resistance at all to sliding, the matrix 
deforms as does unsupported matrix; there is no 
shear magnification and ere = Vmcro where Vm is 
the volume fraction of matrix. 

It has also been assumed that the fibres 
contribute no Orowan hardening to the matrix 
nor interfere with recovery. As Street [7] has 
pointed out, in soft crystalline matrices filled 
with closely spaced fibres (such as rod eutectics 
in which the rod spacing may be ~ 1 /zm) the 
fibres should impede slip quite strongly; they 
should also retard recovery and in both these 
ways make a contribution to deformation 
resistance additional to the contributions already 
discussed. There is presumably a similar addi- 
tional impedance contribution with polymer 
matrices that deform by shear concentrated on 
one plane, like slip in crystals. 

3. D is t r ibu t ion  of St ress 
The tensile stress cr~ in the fibre at any point is 
obtained in the usual way by integrating inter- 
face shear stress r from the fibre end. Thus, 
assuming cylindrical fibres of radius a and length 
l, 

et~a 2 = - 2~ra [ x  rdx  (10) 
J z/2 

The rate law of  equation 6 enables the stress r 
to be defined in terms of the rate ~ of relative 

motion r (equation 3a) as /3r n = t, where /3 is 
the appropriate proportionality factor. Hence, 
using equation 3a to substitute for 

~ = - - dx 
a ~/2 

2. 1+1,o] 
- a O  + ,0 L \ 5 - /  - x ( l l )  

which gives the relation between cri and x shown 
in fig. 5 for several values of  n. The interesting 
point about the relation is that for high values of 
n, which apply to some practical matrices, the 
tensile stress in the fibre rises nearly linearly from 
the fibre-end to the fibre-centre, a point that was 
noted by Kelly and Tyson [1 ]. 

The tensile force in the matrix is also given by 
an expression like that in equation 11, but 
obtained by integrating from a position opposite 
the fibre-centre to a position opposite the fibre- 
end. For high values of n this force also rises 
neaily linearly over the whole distance from the 
fibre-centre to the fibre-end. Assuming that the 
tensile force in the matrix is zero at a point 
opposite the fibre-centre we then have 

mean tensile force supported by fibres Vf 8f 
mean tensile force supported by matrix Vm 6m 

. . . . .  (12) 

i.e. matrix and fibre bear nearly equal shares of 

r0,~ n=l I 

~ o,2 

o - -  l _ _  l _ _ _  I l 
0 01  0 2  x/z 0 3  0 4  0 5  

Ce re Half length of f ibre = l /2 
of f ibre 

figure 5 Variat ion of tensile stress along the length of a fibre. The full line curves apply when f low occurs continu- 
ously with time and describe the variation of stress for different values of n in the matrix flow law of equation 6. 
This is the situation discussed in this paper. The dashed curve applies when the matrix flow rate is zero, i.e. when a 
fixed elastic or plastic strain occurs, 

101 



D. McLEAN 

the total applied force. This conclusion can also 
be seen in Ferris' detailed calculation [4]. The 
load sharing is quite different f f0m that ~ir/the 
case usually treated where no continuous flow 
occurs and most of the load is borne by the 
fibres, essentially because the force distribution 
along them is then of the type depicted by the 
dashed curve in fig. 5. The force distribution 
corresponding to the solid lines in fig. 5 precludes 
any marked preferential loading of the fibres. 
Since the matrix nevertheless does not extend 
rapidly the shear stress at 45 ~ to the axis, which 
is generated by the axial tensile stress in the 
matrix and causes extension, cannot be large. 
Consequently there must exist a lateral tensile 
stress in the matrix which offsets most of this 
shear stress and which consequently may be 
large, and which helps to create the complicated 
non-uniform multi-axial stress state in the 
matrix referred to earlier. 

4. End F o r c e  o n  F ibres  
There is also an end stress on each fibre. Accord- 
ing to equation 3a at the end of each fibre there 
is relative motion between fibre and matrix at the 
speed 

e = d / 2  (13) 
As long as no cavity opens up at the fibre end, 
there must trail in the wake of the fibre as it 
moves relative to the matrix the thin pyramid of 
matrix material AZ shown in fig. 6, which 
increases the effective length of the fibres from l 
to l + 2z (counting the pyramids at both ends), 

A 

? . [:05:: 

Figure 6 As long as a cavity does not open up at a f ibre 
end, a pyramid AZ of matrix must move with the f ibre 
relative to the surrounding matrix. The movement can be 
represented by means of the dislocation loops shown, 
which travel to the right, from A to Z, as the pyramid 
moves to the left relative to adjoining matrix. 

where z is the length AZ of a pyramid. Hence, the 
end stress e~ at A can be computed by employing 
the standard procedure used in deriving equation 
11 for crf; i.e. by integrating, from Z to A, the 
shear stress applied to the  pyramid of matrix. 
Then, if err' is the fibre-centre stress, : 

~ e l ~ '  ~ 2 z / l  (14) 
If  we can find another expression connecting ere 
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and z, both ale known. Another expression can 
be obtained by imagining the tensile strain of  
magnitude e e / E m  (Era is the matrix Young's 
modulus) necessarily present in the pyramid as 
existing in the form of the n dislocation loops, 
each of thickness (Burgers veztor) b, indicated in 
fig. 6. Then 

nb = �89 zlEm (15) 
the factor �89 arising because the tensile stress is 
assumed to build up linearly from Z to A. 
Equation 15 is not the desired expression because 
it contains two new unknowns, n and b, which 
however can be eliminated. Each loop disappears 
by diffusion in a calculable time t' (see appendix) 
given, for cylindrical fibres, by 

zr k T a 2 37r 2 a 2 r/ 
t '  = -- (16) 2D G b 3 G b 2 

where D is the diffusion coefficient, -q the 
viscosity, G the shear modulus, k is Boltzmann's 
constant and T the absolute temperature. In time 
t' the relative displacement between fibre end A 
and surrounding matrix is i t "  and this must be 
equal to the tensile strain given by equation 15. 
Hence, using equations 13 and 15 

l t ' / 2  = r t '  = n b = ere z / 2 E m  (17) 
Equation 17 is the desired expression since the 
new parameters in it are k n o w n - t ' - f r o m  
equation 16 and Em as the Young's modulus of 
the matrix. Combining equations 14 and 17, 

~e = ~/2~'f ~ t' Em l 
(18) 

f z = 4 l  ~ t '  F-~/2~rr' 

If  the matrix is aluminium at 300~ and a = 1 
ffm (i.e. appropriate to a rod eutectic), t '  ~ 4 sec. 
Assuming that err '= 107 Pa (1 kgf/mm2), 

= 1 0 - 7 / s e c ,  and I = 10 mm, then Cro = 7 x 105 
Pa and z = 0.5 ram. In this case both the end 
stiess and the effective extra length ~ 2z which 
the pyramids add on to the fibres can be 
neglected. However, by substituting in equation 
18 for t '  from equation I6 it can be seen that 
ae oc fibre radius a, so that fat fibres are 
undesirable as the end stresses may be large 
enough to provoke rupture. In the case of a hot 
polymer "filled" with glass fibres flowing at the 
speeds enforced during extrusion-moulding, both 
(re and z are likely to be far from negligible, in 
which case the end effect contributes consider- 
ably to the flow resistance. 

5. Discussion 
Equation 9 expresses the flow resistance of a 
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fibre-strengthened matrix in terms of the 
physically significant parameters (and - to 
remind the reader - applies best when the elastic 
strain can be neglected, as do other treatments). 
Thus, the parameter l/2s, i.e. fibre length divided 
by twice the fibre spacing or, approximately, the 
aspect ratio y/s of the inter-fibre spaces (see fig. 1) 
should be large. Vm should also be maximised by 
using thin fibres, which implies a large fibre 
aspect ratio. It is, however, usual to express 
fibre-strengthening in terms of fibre aspect ratio 
p and volume fractions Vf and Vm. Since 1Is 
equals pV~/Vm for lamellar fibres and approxi- 
mately equals p Vf/( ~/~-ff r - 2 V 0 for cylindrical 
fibres, equation 9 is equivalent to 

pl+l/n V~l+I/n 
lamellar fibres (re - ~ , ~  ~ ao 

cylindrical fibres ~ (19) 
pl+lm Vt "1+1/n Vm 

e e =  2 -T477-'~ ( 'G-~  = ~ (ro 

~o being the stress that produces the same 
extension rate in the unsupported matrix as (re 
does in the fibre-strengthened matrix. Mileiko's 
corresponding equation 17 (which can be 
expressed as 

pl+lln Vfl+l/n 
(re - 2~+1/~ Vmi/n (ro 

for lamellar fibres in the present notation) is 
similar to equation 19. As Mileiko shows, his 
equation fits experimental data approximately, 
so equations 9 or 19 will as well. Because the 
flow resistance may be greatly reduced by 
interface-sliding or increased by interference with 
slip and recovery, there is no point in taking 
comparisons further until we have information 
about these factors. However, as an example of 
the theoretical strengthening available, assume 
0.5 volume f~ action of fibres with aspect I atio 100 
in a matrix with n = 5 (e,g. A1 or Ni) when, 
according to equation 19, the fibre-strengthened 
matrix will carry 96 times as large a stress as the 
unsupported matrix for a given rate of extension, 
or (equation 6) at the same applied stress will 
extend 8 x 109 times more slowly. This degree 
of strengthening of a metal matrix exceeds the 
best obtainable by conventional alloying. 

Since interface sliding reduces the effective 
fibre-reinforcement, in the limit to zero, the 
question whether it does or does not occur is 
important. Although in a composite intended for 
creep resistance sliding is undesirable, in the 

extrusion moulding of glass-filled polymers inter- 
face layers that assist sliding are beneficial 
provided the finished room temperature proper- 
ties are not harmed. 

The sensitivity of a fibre-strengthened matrix 
to fibre distribution is worth pointing out. By 
combining equation 9 with the strain rate law of 
equation 6 it follows that ~ ~(2s/l) n+1. This 
relationship applies to any local volume element 
large enough to contain several fibres. The local 
strain rate is then highly sensitive to variations in 
(l/s), i.e. to fibre distribution. In a fibre-strength- 
ened matrix designed for creep resistance the 
useful life, namely the rupture life, is probably 
determined by local strain, e.g. through a 
strain-dependent cavitation process. Conse- 
quently, the rupture-life is likely to be heavily 
reduced by inhomogeneities in fibre distribution, 
although the overall strain rate is little affected. 

When the matrix is a metal and the tempera- 
ture low, the amplified shear strain described by 
equation 5 will manifest itself as rapid strain- 
hardening in a tensile test, and thus helps to 
account for the observation of rapid strain- 
hardening which appears to have been made in a 
discontinuous fibre-composite by Lee [8] and 
which characterises pearlite. 

6, C o n c l u s i o n s  
1. The composite's flow resistance is mainly due 
to the fact that, in comparison with unsupported 
matrix, the shear strain is greatly amplified for a 
given overall extension; in addition, the shear 
stress required is necessarily also larger in the 
composite. As far as metal matrices are con- 
cerned, the theory indicates that a flow resistance 
superior to that obtained by conventional 
alloying is achievable in principle. 
2. The end stress on a fibre oc fibre diameter 
(cylindrical fibres). Thus for creep service, in so 
far as rupture is initiated at fibre ends, fine fibres 
are better than fat fibres. Moreover, rupture-life 
is expected to be shortened drastically by 
inhomogeneous distribution of the fibres. 
3. As long as flow in the matrix occurs, the 
applied tensile load is approximately equally 
divided between fibres and matrix independently 
of relative volume fractions. 
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A p p e n d i x  - T h e  W a k e  of a Fibre 
Relative mot ion  be t we e n  fibre and matrix 
results in a pyramid  of  matrix material A Z  
(fig. 6) being sheared relative to the rest o f  the 
matrix, unless diffusion can feed material to the 
interface at A fast enough to absorb all the 
relative motion.  

I f  shear occurs as depicted in fig. 6 the relative 
mot ion  can be imagined to occur through the 
mot ion  of  the edge dislocation loops indicated. 
The loops will shrink under  the united act ion o f  
line tension and the local tensile stress; their 
diminishing diameter towards Z is indicated in 
the figure. N o  loop therefore exists for longer 
than a certain time. Consequently;  in the wake of  
each fibre there exists a knowable number  o f  
loops, determined by the speed of  relative 
mot ion  between matrix and fibre at A, which 
governs the rate at which loops are generated, 
and by the lifetime of  a loop. 

The loop lifetime can be estimated as follows, 
where only the driving force f rom loop energy is 
taken account  of. The energy of  a loop of  radius 
r and Burgers vector b is w ~ Gb~r In r/b. There 
are n = 7rr2/b 2 vacancies o f  a tomic volume b ~ in 
this loop. Hence 

Ow Or ( b 2 ) I  r Gb2] = Gb 2 In + ~ r  6 
Gb 4 r 
y4r In t~ 

In shrinking, the loops create a vacancy super- 
saturat ion c in the adjacent matrix, which 
causes vacancies to be t ransported away at the 
rate dn/d t  = ( -  47r Dr/b  a) (C/Co - 1), where D 
is the diffusion coefficient and spherical sym- 
metry has been assumed to a sink o f  equilibrium 
concentra t ion Co at infinity [9]. We therefore 
have 

) dt = d n ' ~  = 2 ~ r  Co - 1  " 

N o w  c = Co exp (Ow/Dn)/kT. Substituting for  e 
and Ow/On gives 

dr 2D ( Gb41n r/b ) 
d--') = b exp 2r 1 

which, since Gb 4 lnr/b ~ 47rrkT, becomes 

dr 2D Gbqn  r/b DGb  a 

d t  " - --ff " 2r rrrkT 

Integrating, rZ/2 ~ - ( DGbat)/r&T, + constant.  
Since at t = 0 ,  r = a ,  the constant  = a2/2. 
Hence r ~ ~ a ~ - (2DGb~t)/rrkT, and the time t '  
required for the loop to shrink to zero is 
t' = (rrkTa~)/2DGb ~. As an example, for A1 at 
300~ D ~ 1 x 10 -1~ cm2/sec and G ~ 2.5 • 
10 n d/cm z. Putting a = 1 /xm gives t '  = 3.7 sec. 

A useful alternative expression for t '  is 
obtained by replacing D with the appropriate  
function o f  the viscosity coefficient 7. We have 
D = kT/6~vb~? [10], which gives 

t '  = (3~r 2 a%?)/Gb 2. 
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